
89

A Framework for Teaching Novice VB Programming Using
Motivational Game Scenarios

Minjie Hu
Tairawhiti Polytechnic

PO Box 640, Gisborne, NZ
min@tairawhiti.ac.nz

Abstract

As programming educators we need to find a way to
engage our students. The students we see today have been
called the Nintendo Generation. Such students are
continually exposed to fast-paced sound, graphics,
animation and games. It can be argued that these are the
kinds of things that Nintendo Generation students want to
develop when learning Computer Science. As a result,
computer programming educators have started to use
games to engage and motivate students who are learning
programming. However, there are difficulties in teaching
novices to program using games. In many cases, it is too
complicated for novices to begin programming with the
extensive packages, libraries, and available OO languages
when they are required to develop games. Moreover, the
games development seem trivial to the Nintendo
generation if we do not include AI. Unfortunately, AI
algorithm development is not appropriate for novices who
are still trying to grasp the simple syntax and semantics of
programming. This paper reports on research that
attempts to explore how educators can motivate students
to learn programming by using simple game scenarios.
The revised Bloom’s taxonomy is employed as a
framework to aid in the creation teaching resources that
utilise game scenarios as exemplars, exercises and
assessments. Finally, some recommendations are made on
how the teaching of programming might be improved
through a game approach to teaching and learning.

Key words: games, novice programmers, Bloom’s
Taxonomy, Visual Basic

1. Introduction

Like many tertiary education institutes, Tairawhiti
Polytechnic has students with a wide range of academic
and cultural backgrounds. Previously, various strategies
for the teaching of programming courses have been
reported (Hu, 2003). These strategies were designed to
meet both the student’s expectations and the course
objectives in terms of teaching resources, teaching style
and assessment approach. One of the significant changes
made was to teach introductory programming using MS

This quality assured paper appeared at the 20th Annual
Conference of the National Advisory Committee on Computing
Qualifications (NACCQ 2007), Nelson, New Zealand. Samuel
Mann and Noel Bridgeman (Eds). Reproduction for academic,
not-for profit purposes permitted provided this text is included.
www.naccq.ac.nz

Visual Basic (VB) instead of C++. A recent NACCQ
moderation report found that VB is the most popular
language for teaching first year programming courses at
Institutes of Technology and Polytechnics (ITP) in New
Zealand. The primary benefit of adopting VB is that a
novice programmer can rapidly learn enough VB to
produce impressive looking GUI program (Tanall &
Davey, 2001). It has been claimed that VB is the simplest
programming language for developing the common
Windows applications and that the quality of applications
developed in VB can be as high as those developed in
C++ (Sink, 2002).

Recent research has shown that teaching VB using the
dynamic visualization (Hu, 2004) of flowcharts and code
makes it easier for students to obtain immediate feedback
on variables based on the step-by-step execution under
program control. Additionally, it was found that using
dynamic visualization helps establishing a degree of self-
confidence in students who are learning programming.
Further research found that it is beneficial to integrate VB
with other computer subjects such as database
development, data modeling, web application
development and MS Office applications (Hu, 2005).
Moreover, it was found that it is relatively easy to
integrate VB components with components developed in
other programming languages (Hu, 2006). For the
reasons outlined above, VB has been applied as an
instrument for teaching novice programming at
Tairawhiti Polytechnic for several years.

Guzdial and Soloway (2002) argue that computer science
educators are guilty of employing an out-dated view of
computing and teaching much as they learned it by laying
out complex patterns of abstract decisions and
computations, manipulating invisible data structures, and
then printing a number or a phrase.

In a response to the demands of the new Nintendo
generation, computer educators have begun to investigate
a game based approach to the teaching and learning of
introductory programming. Kearney & Skelton (2003)
discussed an approach to bringing games programming
into their classroom in an engaging, challenging and
pedagogically valid way.

More recently, a second year programming paper
teaching traditional programming skills through games
programming was described (Haden, 2006).

90

This paper reviews the current literature in the field and
then discusses how to integrate simple game scenarios
into the teaching of computer programming. These
scenarios act as a way of illustrating basic programming
concepts, using VB, in order to motivate students to learn
programming. The revised Bloom’s taxonomy (Anderson,
et al. 2001) is used as a framework to create game
scenario teaching resources. Finally, some
recommendations are made on how the teaching of
programming might be improved through a games based
approach to teaching and learning.

2. Background

2.1 Why Games Programming?

In order to improve student engagement, computer
educators need to understand the way in which students
are motivated to learn. Motivation is defined as the
complex forces, drives, needs, tension states, or other
mechanisms that start maintain voluntary activity directed
toward the achievement of personal goals (Hoy & Miskel,
1982). It is also described in three general forms, namely
extrinsic (based on future reward), intrinsic (based on the
subject itself) and social (based on the influence of a third
party or family) (Jenkins, 2001; Feldgen & Clua, 2004).

Several studies have been undertaken recently that
attempt to identify the key motivator for students to learn
programming. Guzdial & Soloway (2002) found that
using games are an intrinsic motivator for students who
are learning to program. Xu (2006) claims that using
games to teach programming is similar to two people
holding a dialog. If the topic is interesting, they will talk
for longer. It can be argued that in the same way games
stimulate students to continue to communicate with the
computer in the form of programming.

Perhaps, key to the success of games engaging students is
that games encourage an element of fun, imagination and
creativity that is lacking in more traditional business
orientated teaching examples and assessments (O’Kelly
& Gibson, 2006). It can therefore help to transform
fragile knowledge into concrete skills that can be applied
in new and different situations. Additionally, it has been
observed that game programming encourages students, in
particular novices, to experiment, invent, and modify
programs (Kolling & Henriksen, 2005, Becker, 2001).
Finally, it has been reported that the interest a game
programming course provides has been shown to improve
retention and attendance rates (Feldgen & Clua, 2004;
Haden, 2006).

Many computer programming teachers lament at the fact
that their students are poor problem solvers. Becker (2005)
identified three ways in which to teach students to
become better problem solvers. One of these ways is to
teach with diversity in order to address students’
individual learning styles. Becker found that teaching
programming using games supports a variety learning

styles. However, integrating game scenarios into the
instructional design for teaching novices to program is
itself still an unexplored area.

2.2 Models for the Integration of Games

Many educators (Motta, Jr & Lima, Jr, 2006, Purewal, Jr
& Bennett, 2006, Parberry, Kazemzadeh, & Roden, 2006,
Kolling & Henriksen 2005, Kearney & Skelton, 2003,
Masuch & Freudenberg, 2002) teach game programming
in second-year advanced programming courses in which
the students already have knowledge of object-oriented
(OO) principles and Artificial Intelligence (AI). The
choice for timing of such a course is made because it is
believed that in order to provide an engaging
programming course prior programming experience and a
reasonable level of conceptual sophistication is required
(Distasio & Way, 2006). Such courses make use of
different or advanced packages and libraries for game
development. Software that has been reported as being
used in these course are RoboCode, Jsoccer, DirectX,
Director, jogl, open GL, Sage and Shark-3D.

Other educators have integrated games into their
introductory programming course (Feldgen & Clua, 2004,
Cliburn, 2006). But, they create console-based games by
Pascal and C++. The console-based games have less
appeal and limited user interaction and are not believed to
motivate the current generation of students.

Alice may be used to bridge the gap between the previous
approaches to integrating games into novice
programming courses. Alice was developed by Carnegie
Mellon University and has been successfully utilised as
an introductory programming tool in various universities
(Zaccone et. al., 2003, Klassen, 2006). It enables novice
programmers to develop interesting 3D animations and
games by drag-and-drop. The students are free from
syntactic concerns because the environment ensures the
correctness of the syntax and they are therefore free to
focus on the semantics and OO principles. The students
found Alice to be a fun way to learn (Klassen, 2006). But
they were concerned that the amount of time they had to
spend in order to generate a 3D picture. The students
expressed the view that the time could be better utilised
by learning more pure programming concepts. After
using Alice for three semesters, Klassen concluded that
Alice didn’t serve the goal of providing a solid
foundation of programming concepts within the first
semester of programming. Moreover, Distasio and Way
(2006) also believe that while Alice is fun, using it for
games programming requires significant overheads in
terms of time and experience.

There are numerous game scenarios to choose from. But
how can we as educators adopt and adapt them to meet
the learning outcomes for a first year programming
course?

91

3. Designing the Course

The following research utilizes game scenarios and the
revised Bloom’s taxonomy (Anderson, et al. 2001) to
design instructional resources.

The notion of using Blooms taxonomy to enable the
design of course objectives and items for the assessment
of novice programmers is not new. However the
taxonomy provides a useful framework that with careful
applications ensures that the resources developed for a
course do the job that they were intended to do. Lister
(2001) provided guidelines on the use of Bloom's
Taxonomy of Educational Objectives (Bloom, 1956) to
the design of assessments and learning objectives for first
year programming courses. The Bracelet Project group
(Whalley, et. al. 2006) applied the revised Bloom’s
Taxonomy (Anderson et. al, 2006) as a way of generating
multiple-choice questions that assess novice program
reading and comprehension skills. To this end the key
tools used in this course are game scenario based
resources, VB with dynamic visualization, and the MS
VB.NET integrated development environment (IDE). In
addition the course makes use of a textbook by Crews and
Murphy (2004)

The purpose of our course is not only to deliver the
contents of the course, but also to produce students that
are mature, self-motivated and independent learners. To
this end, the key steps that students progress through
during the course are designed so that the course as a
whole holds to the principles of the Learning Maturity
Model (Thompson, 2006). Thompson suggested that a
student’s learning processes is a series of transformations
from a novice to a matured learner. In this case a student
can be identified as having reached a suitable level of
learning maturity when they have achieved the capability
to repeatedly and reliably meet learning outcomes. He
applies the capability maturity model to a learning
maturity model and divides the process into different
levels.

The approach throughout our course follows a
developmental model that begins at lower-order thinking
and slowly transitions to higher-order thinking. This
forms the framework unifying the elements of the course.
The key progression of the course is as follows (the
Blooms’ level achieved by each element is indicated in
italics):

1. The tutor explains and guides students through the
study of the sample code for a game. Students begin
to comprehend or “understand” the programming
language, its syntax and semantics.

2. Following on from the example, presented in 1, the
students modify the example by adding similar code
to familiarise and then to “remember” or recall what
they have learned.

3. Doing further similar assignment based on the
exercises presented in 2, students learn how to
“apply” their newly gained knowledge to different
situations.

4. Designing a variation on the exemplar game students
can learn how to “analyze” the requirements and
existing design.

5. Testing and comparing the provided code with their
own code, students learn how to “evaluate” programs.

6. By adding new functionality that improves the game,
students learn how to “create” and develop programs.

4. The Course Progression

At the very beginning of a GUI/Games first style
approach to teaching programming, there are several core
concepts that need to be covered above and beyond a
traditional non-gui approach. These include Event-driven
programming and simple GUI components such as forms,
buttons, labels and textboxes. To introduce students to
these things we start from a simple game called “Dice”.
The coding of this game is modeled by the tutor in a
stepwise manner and used to discuss some basic
programming concepts as discussed below and is
subsequently provided to students as their first piece of
example code.

4.1 A Simple First Game

The first application that students are exposed to is a
simple dice game. This game is presented to the students
using a staged set of resources that include examples and
exercises. This first game fulfills the course progression
steps 1 and 2.

4.1.1. Example 1: Roll a Dice

In the first example a program is written that stimulates a
roll of a dice. This program displays a randomly
generated number between one to six at the click of a
button.

Before the tutor starts coding, they explain how a button
may be used as a trigger to start the program and how a
label may be used to display information on the form. A
projector is used to allow students to view the process of
programming. The code developed is shown in figure 1.

 Dim Dice1 As Integer
Randomize()

 Dice1 = Int(Rnd() * 6) + 1
 Label1.Text = Dice1

Figure 1. The First Program

From this small piece of code, the students have been
taught the basic concepts related to the nature and use of

92

data type, variables, VB built-in functions, processing and
outputting data. Through the demonstration they
experience first hand that without Randomize()the
dice always generates the same sequence of numbers. As
a result they are introduced to the concept of pseudo-
random number generation using a concrete example.

4.1.2. Exercise 1: Roll Two Die

Students now add their own code to the Example 1
program. This exercise is a small scale exercise that
fulfils stage 2 of the developmental model.

The students are required to write a program that
simulates the roll of two die and displays the result. This
exercise requires them to essentially duplicate the code,
but in order to do this correctly they must be able to read
and comprehend the example code from step one. The
students are instructed to use the debugger to test their
code and track variable values.

Key to the students learning in this step is the use of
dynamic visualisation (Hu, 2004) and a debugger to assist
students understand the programming concepts and
correct errors in their code. Figure 2 illustrates the
dynamic change of values for each variable when the
code runs step-by-step.

It has been observed that students are more interested and
are willing to participate in this practice because they are
eager to test their own code in the IDE. Because the
students are engaged and enthused by this small exercise
they more motivated to move on to next step.

Figure 2. The dynamic of variable values

4.1.3. Example 2: Add a Picture for Dice

This example code builds on Example 1 and shows the
students how to add images to their game GUI.

The tutor writes a program that displays a dice with
picture and number by modifying Example 1. They are
careful to point out to the students that the picture box

and the label should represent the same number (Figure
3).

Six images are used to represent the six numbers or sides
of each dice. The images are named from Side1.gif to
Side6.gif.

 Initially we avoid introducing students to the
complexities of a selection statement. Instead of using a
nested IF or CASE statement to select each picture in the
first version we simply use a concatenated string ("Side"
& CStr(Dice1) & ".gif") to select the image that
corresponds to the randomly generated number.

This example provides an opportunity for the tutor to
discuss how different data type can be combined.

In this example a single statement is added to the code in
Example 1, the result is shown in Figure 3.

PictureBox1.Image = Image.FromFile ("Side"
 & CStr(Dice1) & ".gif")

Figure 3. The dice exercise using an image.

Figure 4. Exercise 2, two die

4.1.4. Exercise 2: Add Two Pictures for Both Dice

In this exercise once again the students extend the latest
example code. The students use the same code as
generated in Example 2 to create a duplicate dice (Figure
4).

So far, students have learned how to use various VB
controls on a VB Form. Moreover, they should now
understand data types, variables and the notion of
sequential programming. The examples give students the
opportunity to read and comprehend VB code. The
exercises reinforce and further their understanding of the

93

programming concepts taught during the development of
Example 2.

4.1.5. Example 3: A First Simple Playable Game

We have observed that once students have got the die
displayed on the screen they are keen to learn how to
extend the application into a playable game.

The one and only rule for the dice game is that if the two
dice numbers are the same, the player wins. Thus, the
concept of a selection statement is introduced in order to
complete this game. A message box is used in the game
as a way of notifying the current game status to the player.

The GUI should display the number of times the player
has won and the number of times the game has been
played (the number of rolls of the die). An Exit button is
added that triggers the creation of a modal message box
that confirms the termination instruction. Sample screen
snapshots of the working Example 3 are provided in
Figure 5.

Figure 5. The first simple playable game

Firstly, students are required to apply their current
programming knowledge in order to display the value of
a variable that counts the number of times the game has
been played (Figure 5, top). The line of code that
increments the counter is introduced as count =
count + 1. However, when this version of the code
is run students discover that they always get the same
value due to the use of a local variable. In this way the

idea of a module variable can be introduced. By
comparing the two different kinds of variables, students
learn about the scope of each variable and also how to
avoid or identify a similar mistake in the future.

Next the students learn how to use IF statements to set up
the game and to exit the game. Additionally they learn
how to use an IF statement to count the times that the
player has won the game (w = w + 1).

Various message boxes are used to provide information to
the player. And students learn about another built-in
function allows for percentages to be formatted in a string.
The Example 3 code is provided in Figure 6.

The code is now getting more complicated. Students are
positively keen to learn because they expect their game is
getting better and better. They are enthusiastic to try
adding extra features to it, such as wallpapers for the
Form, colours, different size and font for words and even
music or sound for winning. The programming class is
now more eager to do the tasks and no longer requires
persuasion from the teacher.

Dim w, count As Integer
Private Sub Button1_Click(…) …
……

…….

count = count + 1
If Dice1 = Dice2 Then
MsgBox("You win.",
MsgBoxStyle.Exclamation, "Great!")
w = w + 1
End If
End Sub

Private Sub Button2_Click(…) …
Dim Msg, bye As String
Msg = ("You have won " & w
Msg = Msg & " time(s), within "& count
Msg = Msg & " time(s) that" & vbCrLf
Msg = Msg & "you have clicked. That is
" & FormatPercent(w / count)
bye = "Thank you for playing this
game."

If MsgBox("Exit Program?",
MsgBoxStyle.YesNo) = MsgBoxResult.Yes
Then
MsgBox(Msg, MsgBoxStyle.Information,
bye)
Close()
End If
End Sub

Figure 6. Example 3, the playable game

4.1.6. The Dice Game as an Assessment Item

Since games were introduced as examples and exercises
students have also expected to have a game program as
part of their assignment. However, our goal in using

94

games is not to teach game development. We want
students to learn core programming principles. The dice
game scenario is not only used to stimulate students to
learn programming but is also used as a foundation for a
course assignment. The assignment is designed in such a
way that the students reach stage 3 in the course
progression.

A more complicated IF statement is required in the
assignment to improve the dice game. Students are also
required to use a different layout for game output. The
Assignment asks students to write a program to simulate
rolling two die. If the die have the same number, the
player wins 5 points. If the die have different numbers,
the player losses 1 point. The result is required similar as
Figure 7.

Figure 7. Sample result of assignment

Concurrent with the students undertaking the assignment
they are expected, in class, to complete non-game based
exercises are also provided such as individual wage, tax
calculation and total accumulation. These exercises
continue the development of the students as independent
learners and focus on stage 3 of the course progression
(see Section 3).

The executable (.exe) file of a sample game is made
available to students so that they may play, experiment
with, and understand the requirements of the assignment.
We have found that supplying an executable is better than
supplying a written specification of the assignment. We
have found that a picture is indeed worth a thousand
words. Hence it might be argued that a playable sample
game is worth more than thousand pictures. By providing
a playable game we make it easier for students to

understand what they need to achieve, especially for
those for whom English is as second language. After
completing this assignment successfully we believe that
students have learned how to analyze and evaluate an
existing GUI application. They have also learned how to
create their own project from an existing one and how to
test and evaluate their software independently.

Through the three stages of example, exercise and
assessments, the dice game program covers the six
cognitive process of revised Bloom’s taxonomy. In this
limited content of knowledge, students are on their way
to becoming a more mature learner.

5. Games as a Common Thread in a Programming
Course

While using game scenarios to stimulate students to learn
programming, the author became impressed and
encouraged by the fact that students were continuing to
use the game scenarios in their next programming course.

5.1 The Guess A Number Game

The guess number game (Figure 8) is used to introduce
repetition statements (looping constructs). In this game
the player enters a number and is trying to guess what the
number is that has been generated randomly by the
computer. In the game scenario students learn how to
combine Loop and IF statements. They also learn how to
write cohesive functions by making use of sub-
procedures and function procedures.

Figure 8. Guess number game

5.2 The Lotto Game

This game simulates a lottery draw (Figure 9) and is used
as a means of introducing the students to the basic

95

concepts of an array data structure. They learn about
array indices, elements and potential applications.

Students often rush into coding the procedure and make
the mistake of creating more than one instance of the
same number in a single lottery draw. To get rid of this
bug they need to nest the Loop and IF statement as they
did in the Guess a Number game (Section 5.1). The
students find that they need to use dynamic visualization
in order to identify and fix the bug.

Figure 9. Lotto game

5.3 An Improved Dice Game

An improved version of the original dice game is now
taught (Figure 10). In order to complete this version of
the game students are required to read and write the score
in the text file. The game also needs an algorithm that
sorts the scores and a search algorithm to find data within
a certain range. Students also learn the simple GUI design
to trigger a certain amount of procedures and functions.

Figure 10. An improved dice game

5.4 Tic-Tac-Toe, Black-Jack & O.O.

With the success the author has had in using game
scenarios to motivate students to learn programming, he
has recently prepared games for teaching in a follow-on,
Level 6, programming course. In this course the games
Tic-Tac-Toe and Black Jack (Figure 11) are used in the
introduction of object-oriented programming for the
Diploma in ICT. In this course the VB Array and OOP
are used in both games. Unlike the previously described

games, for these more complicated ones, the author
provides part of the code for students to start with. For
example, we provide coding for People vs. Computer in
the game of Tic-Tac-Toe. Through this, students need to
complete the function for People vs. People. For Black
Jack, we only provide coding for List Box, not for
pictures. Students need to find out how the instance
matches to the picture. They also need to provide a
function to bid for double score.

Figure 11. Tic-Tac-Toe and Black Jack games

The teaching and learning practice for this course models
the same approach to learning maturity and progression in
developmental steps as described in this paper. The same
model is also applied to developing the resources where
the progression of example to exercise to assignment is
followed as described in Section 4 to 5.3. For each game,
various examples, exercises and assessments are designed
to cover the six cognitive processes of revised Bloom’s
taxonomy. By repeating these three stages for each game,
students not only complete the course content but have
also progressed from a novice to a more mature and
independent learner.

6. Results

Through observation of the activities in the computer
room, we noticed that students are regularly seen playing
and testing their games by themselves or with classmates
and friends. They spend more time on programming both
during and after class than before game scenarios were
introduced. It has become no longer necessary for us to
check whether or not the students are on task due to the
fact that we have managed to capture the students’
interest through introducing game scenarios in
programming.

After each exercise, students are more than willing to
learn a step further before the next topic is introduced.
This is great feedback. It shows they have already
understood how to apply existing knowledge and that
they are ready to go to next step.

Through game programming, students have a more
positive attitude to programming in general. They now
undertake both game and non-game programming equally
well. Some students even find that they are spending less
time to complete non-game programming than the game

96

ones. The number of students who fail their assignment
has dropped to zero since we fully introduced games in
2006 (Figure 12). Although these figures are not
conclusive, and the performance of students in future
semesters will need to be monitored, it shows a positive
trend and is a very encouraging result.

 Year No. of Re-sit Percentage
2004 4 44%
2005 2 25%
2006 0 0%

Figure 12. Number and percentage for re-sit

During the 2006 NACCQ moderation, there were nine
ITPs submitted the module PP590 Programming
Concepts and Tools.

“All used Visual Basic…. All used appropriate
assessments”.

The mixture of game and non-game programming
assessments from this research was recognized by the
following comment:

 “in most cases good practical programming
modules were moderated with Tairawhiti’s standing
out in both presentation and in the level of
assessment for this 500 level programming module”.
“A very good module for 500 level in both theory
and practical.”

We are now adopting a research informed approach to
our teaching and course development. This has lead to
improved teaching and learning. Moreover, we have
found that the attitude of students towards learning
programming has improved as their confidence. When
next module using C# starts, students are interested in
implementing the dice game by themselves in the new
language after learning the new language syntax and
grammar. We found during the process of interviewing
the students that some of the students opt to use VB for
the writing applications in their other courses. For
example students have chosen to adopt VB to create a
prototype for an assignment in the Prototyping course.
Other students comment programming is one of the most
interesting and creative courses that they have studied.

7. Conclusion

The purpose of this research was to use game scenarios to
motivate novice to learn programming principles rather
than to teach them how to develop games. Apparently,
there is no need to start from complicated packages and
libraries. As a programming language Visual Basic has
clear advantages in terms of visualization and rapid
development when compared with console-based
programming of game applications. Game, VB and
Bloom’s taxonomy proved to be rich sources of ideas to
create our teaching resources in terms of examples,
exercises and assessments.

We could use the analogy that a traditional approach to
teaching and learning programming is like a very
nutritional soup, good for you but lacks taste. Game
scenarios provide the spice for our soup that is not only
good for the students but makes the soup more delicious
and attracts students to try it again and again. The
experiential results indicate that game programming
stimulates students’ motivation to learn programming. It
been discovered that through this new approach to
teaching, students are now keen to learn programming
and face problems in a positive manner.

This research has yielded more benefits than we
originally expected. The teacher motivates the students to
learn programming. The motivation of learning from
students also encourages the teacher to improve the way
they are teaching. Game scenarios provide a common
thread throughout the whole teaching process leading
students from a low-order thinking to a higher-order
thinking.

8. Acknowledgement

The author would like to thank Dr. Jacqueline Whalley,
Computing and Mathematical Sciences, Auckland
University of Technology, for her productive comments
and reviews.

9. References

Anderson, L., Krathwohl, D., Airasian, P., Cruikshank, K.,
Mayer, R., Pintrich, P., Raths, J., and Wittrock, M.
(2001): A taxonomy for learning, teaching, and
assessing: A revision of Bloom’s taxonomy of
educational objectives, Allyn & Bacon.

Becker, K. (2005): Games and Learning Styles, Proc.
ICET2005, Calgary, Alberta, Canada

Becker, K. (2001): Teaching with games: The
minesweeper and asteroids experience, Journal of
Computing in Small Colleges 17(2), Dec, pp 22-32

Bloom, B. S. (1956): Taxonomy of Educational Objectives
Handbook 1: Cognitive Domain. New York: Longman,
Green & Co.

Crews, T. and Murphy, C. (2004) Programming right
from the start with Visual Basic.NET, Prentice Hall

Distasio, J. and Way, T. (2006): Exploring computer
science concepts with a ready-made computer game
framework, Retrieved 17 March, 2007, from
http://arxiv.org/ftp/cs/papers/0609/0609070.pdf

Feldgen, M. and Clua, O. (2004): Games as a motivation
for freshman students to learn programming, Proc. 34th

ASEE/IEEE Frontiers in education conference, S1H
11-16.

97

Guzdial, M. & Soloway, E. (2002): Teaching the
Nintendo generation to program, Communications of
ACM, 45(4), pp 17-21

Haden, P. (2006): The Incredible Rainbow Spitting
Chicken: Teaching Traditional Programming Skills
through Games Programming, In Proceedings of the
8th Australian Conference on Computing Education,
Hobart, Australia, pp. 81-89

Hoy, W. and Miskel, C. (1982): Education administration:
Theory, research, and practice, pp137, Random House
Inc

Hu, M. (2006): Component Programming, In Proceedings
of the 19th Annual NACCQ, Wellington, New Zealand,
pp. 127-134

Hu, M. (2005): ICE: Integrated Computing Education -
An individual integrated computing teaching
experience, Proceedings of the 17th Annual NACCQ,
Tauranga, New Zealand, pp. 183-187

Hu, M. (2004): Teaching Novices Programming with
Core Language and Dynamic Visualisation, In
Proceedings of the 17th Annual NACCQ, Christchurch,
New Zealand, pp. 95-104

Hu, M. (2003): A Case Study in Teaching Adult
Students Computer Programming, In Proceedings of
the 16th Annual NACCQ, Palmerston North, New
Zealand, pp. 287-290

Jenkins, T. (2001): “Teaching programming: A journey
from teacher to motivator”, Retrieved 2 July, 2005,
from http://www.ics.ltsn.ac.uk/pub/conf2001/papers

 /Jenkins.htm

Kearney, P. & Skelton, S. (2003): Teaching Technology
to the Playstation Generation, Bulletin of Applied
Computing and Information Technology, 1(2),
Retrieved 6 Oct, 2006, from http://www.naccq.ac.nz/

 bacit/0102/index.html

Klassen, M. (2006): Visual approach for teaching
programming concepts, Proc. 9th International
Conference on Engineering Education, San Juan, PR

Kolling, M. and Henriksen, P. (2005): Game
programming in introductory courses with direct state
manipulation, Proc. ITiCSE’05

Lister, R. (2001): Objectives and objective assessment in
CS1, Proc. 32nd SIGCSE technical symposium on
Computer Science Education, Charlotte, North
Carolina, USA, pp 292 - 296

Masuch & Freudenberg, (2002): Teaching 3D computer
game programming. Retrieved 2 Sept, 2004, from

http://wwwisg.cs.uni-magdeburg.de/graphik/pub/files/
Masuch_2002_T3D.pdf

Motta, Jr. P. and Lima, Jr. H. (2006): Teaching computer
programming: A game driven approach, Retrieved 5
March, 2007, from http://www.cin.ufpe.br/~sbgames/
proceedings/files/Teaching%20Computer%20Program
ming.pdf

O’Kelly, J. and Gibson, Jr. P. (2006): RoboCode &
Problem-based learning: A non-prescriptive approach
to teaching programming, Proc. ITiCSE’06

Parberry, I, Kazemzadeh, M, and Roden, R. (2006): The
art and science of game programming, Proc.
SIGCSE’06

Purewal, Jr. T. and Bennett, C. (2006): A framework for
teaching polymorphism using game programming,
Journal of Computing Sciences in Colleges, Volume 22,
Issue 2, pp. 154-161

Sink, K. (2002): VB or C++: Which is better for DirectX
Games? SAMS, Retrieved 26 June, 2006, from
http://www.samspublishing.com/articles/
printerfriendly.asp?p=26257&rl=1

Tanall, A. & Davey, B. (2001): How Visual Basic entered
the curriculum at an Australian university: An account
informed by innovation translation, Proc. Informating
Science, June 2001, pp. 510-517

Thompson, E. (2006): Using a subject area model as a
learning improvement model, Proc. 8th ACE2006

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins,
P., Kumar, A. and Prasad, C. (2006): An Australasian
study of reading and comprehension skills in novice
programmers, using the Bloom and SOLO taxonomies,
In Proceedings of the 8th Australasian Computing
Education Conference, pp. 243-252.

Xu, C. (2006): Why and how to teach game programming,
In Proceedings 2006 International Conference on
Frontiers in Education: Computer Science and
Computer Engineering, Las Vegas, CSREA Press USA,
pp. 215-220,

Zaccone, R., Cooper, S., and Dann, W. (2003): Using 3D
animation programming in a core engineering course
seminar, 33rd ASEE/IEEE Frontiers in education
conference, 2, pp.14-17

