
53

Environments for a Networking Laboratory

Morgan Conbere and Michael Erlinger
Computer Science

Harvey Mudd College
Claremont, CA USA

{mconbere,mike}@cs.hmc.edu

Renzo Davoli
Computer Science

University of Bologna
Bologna, Italy

renzo@cs.unibo.it

Michael Goldweber
Computer Science
Xavier University

Cincinnati, OH USA
mikeyg@cs.xu.edu

Abstract
TinkerNet, TinkerNet2, and VDE (Virtual Distributed
Ethernet) were all developed as low-cost platforms for
teaching bottom-up, hands-on networking at the
undergraduate level. In the original TinkerNet "throw
away'' PCs, cheap components, and free software were
used to create a networking laboratory.

TinkerNet was created as a software-only system based
on User-Mode Linux (UML). VDE provides a distributed
virtual local area Ethernet network based on virtual
switches and virtual cables. These environments enable
students either to modify an existing network stack or to
build their own network stack from the data-link/Ethernet
layer up to the application level. This paper discusses all
three environments (their design, development, and
availability); and our continuing efforts to make the
environments and accompanying lab exercises available
for classroom use.

Keywords: Networks, Networking education

1 Introduction
As computing grows and matures, we are continually
adding layers of abstraction and encapsulation to make
our day-to-day usage and programming tasks easier.
While abstracting away the growing complexity of a
modern computer is a necessary part of computing today,
it is occasionally both useful and important to be able to
pull back those interfaces and see the actual workings of
the systems. Students should understand the workings of
some of our more complicated systems. There is a history
of labs and programming environments that allow just
that (Comer 2002). These systems remove any
unnecessary complexity and leave exposed the features
most important for students to gain all-important hands-
on understanding.

TinkerNet, TinkerNet2, and VDE each provide an
environment for student experience in understanding low-
level networking. These systems provide direct access to
Ethernet packets, and give students the features necessary

This quality assured paper appeared at the 20th Annual
Conference of the National Advisory Committee on Computing
Qualifications (NACCQ 2007), Nelson, New Zealand. Samuel
Mann and Noel Bridgeman (Eds). Reproduction for academic,
not-for profit purposes permitted provided this text is included.
www.naccq.ac.nz

to implement a network stack from the data link layer all
the way up to the application layer. By giving students a
hands-on understanding of how the protocols hidden
away by the now-universal Berkeley Socket API behave,
students will not only have a better grasp of the workings
of a network, but perhaps even have a better
understanding of the proper usage of sockets.

The 2002 SIGCOMM Workshop on Educational
Challenges for Computer Networking (Kurose 2002)
exposed many issues related to teaching computer
networking: top-down versus bottom-up; one course
versus many courses; required course versus elective
course; and undergraduate versus graduate. Throughout
the workshop discussions one recurring theme emerged:
the need for a laboratory to augment lecture. While the
principles of networking could be presented in lectures,
the group recognized that real understanding occurs when
students actively develop and evaluate systems based on
those principles -- there is no good substitute for hands-
on experience with real networks (ACM 1991). All of the
discussed laboratory environments shared two common
issues: initial cost of the laboratory and continued cost of
maintenance. TinkerNet and VDE mitigate these issues
and present novel and powerful environments for
teaching undergraduates about the details of networking
and network protocols.

The rest of this paper is organized as follows. Section 2
gives a description of the original TinkerNet. Section 3
presents an overview of TinkerNet2, which is followed
by a VDE discussion in Section 4. Section 5 presents an
prototype set of laboratory exercises which have been
designed to be applicable to student use within any of the
three environments. This is followed by a discussion of
assessment of these laboratories. Section 6. We conclude,
Section 7, with a discussion of our efforts in making these
environments and exercises available to the community.

2 TinkerNet
At its core, TinkerNet (Erlinger et al. 2004) is a system
for letting students insert their own code for processing,
generating, and responding to network packets into an OS
kernel and booting that kernel on a physical machine.
The system is designed to work with very limited
hardware resources.

When using TinkerNet, students are provided with a
skeleton source tree containing the function prototypes
they must implement, as well as a GNU Makefile pre-
configured to integrate the student's code into a
TinkerNet aware Kernel. Their code both implements a

54

function of the network protocol stack and exercises that
code by sending and receiving network traffic. Using
tools on the server (Figure 1), students can have their
kernel remotely booted on one of the nodes and view
output from that kernel. At no time does the student have
to be aware of the existence of the admin network or the
infrastructure in place to support it. Finally, when the
student is done testing a particular build of their kernel,
they can simply push a button on the server interface
Tinkerboot and have their node reboot.

Figure 1: TinkerNet architecture

The nodes have a limited processing requirement: at most
they need to keep up with incoming network traffic.
Kernels are on the order of three to four megabytes. The
nodes need no hard drive: most nodes in our installations
have been given a network enabled bootloader via a
floppy disk. Thus the total requirements for each node in
a TinkerNet cluster are: two network cables, two network
cards, power, and effectively any PC that will boot from a
floppy.

In addition to nodes for student kernels, there are a few
other hardware requirements. The server provides a home
for the students and for all the TinkerNet software. The
server connects to both the warzone and admin networks,
and can also connect to the institution's campus network.
Also, two hubs or switches are required to create the
admin and warzone networks. Ideally at least the device
for the warzone network would be a hub, since that
makes all the warzone traffic available to all the students,
giving them a more robust network experience.

2.1 Student Kernels
The kernel running on each node is a modified version of
OSKit (Ford et al. 1997). OSKit was developed and
distributed by the University of Utah's Flux Group, but is
no longer maintained. The needs of TinkerNet are
minimal, and thus many OSKit modules are not included
in the build process. The modules used include the OSKit
Standard C Library implementation, network drivers, and
the memory manager.

2.2 Downloading and Managing Student
Kernels

To boot the student OSKit kernels, a modified version of
the GRUB (v0.97) boot loader resides on each node.
When a student decides to boot a kernel, that kernel is
sent through the student interface Tinkerboot to
Tinkercontroller. Tinkercontroller then sends a signal to a
waiting node, whose GRUB then uses TFTP to retrieve
the kernel over the admin network.

Tinkercontroller, the heart of the software side of
TinkerNet, is responsible for keeping track of which

nodes are free, waiting, or missing; transfering kernels;
logging debug data; and relaying both student and admin
commands to the nodes.

2.3 Student and Administrative Interfaces
The student interface, Tinkerboot, allows students to
download and remove kernels, maintain an integrated
debug log, run a packet sniffer, and send custom packets
(i.e., UDP packets containing student specified data).

Tinkeradmin, the administrative interface, allows an
administrative user to reboot each node, and more
importantly to see the status of each node. The
administrative user also has access to the debug log of
each node, making it easy for a lab assistant to help
students debug their code.

2.4 TinkerNet Evaluation
In summer 2005 TinkerNet received a major overhaul; it
was re-factored, commented, and made publicly
available. Also, a step-by-step guide for building a
TinkerNet was put onto a wiki
(www.cs.hmc.edu/twiki). During years of use,
several issues have become clear concerning TinkerNet.

2.4.1 Software
TinkerNet relies heavily on several open source projects.
Two of the key components, OSKiT (Ford et al. 1997)
and GRUB (www.gnu.org/software/grub/
grub-legacy.en.html) are no longer being
maintained. Presently, both are publicly available,
compile, and run properly. However, a change in any of
the above would severely cripple our ability to make
TinkerNet easily deployable.

2.4.2 Hardware
The heart of TinkerNet is the network of nodes that
students use to run their code. Current node
implementations use throw-away computers. In effect the
total cost of the network has been the two hubs and an
extra network card for each node. The minimal cost of
this system is one of its best features. When TinkerNet
was first developed, simulators were neither free nor easy
to use. Also many systems using actual computers had
strict requirements for their nodes. Our nodes are
cheaper, but because of their age they are prone to die.

2.4.3 Operation
While TinkerNet has little monetary cost, there is a slight
price in terms of time. Booting a new kernel takes
approximately 30 seconds and can not be shortened due
to the system BIOS. Under normal usage this is not a
problem since there are more nodes available than
necessary.

Even with its warts, the TinkerNet framework lends itself
to more than just a networking laboratory. The
framework is sophisticated enough to handle distributed
computing as well as a laboratory setup for an operating
systems class.

55

2.5 Future TinkerNet Development
No future development of TinkerNet is planned. The
system is available and bugs will be fixed as resources
permit.

3 TinkerNet2
TinkerNet2 represents a radical departure from the
construction of the original TinkerNet system. In
TinkerNet2 User-Mode Linux, (UML) (user-mode-
linux.sf.net/), is used to run the user's networking
code, while still maintaining the operational structure of
original TinkerNet. This means that there is no longer a
need to have a rack of cheap machines as was required in
the original TinkerNet. Instead, TinkerNet can be run on
a single desktop. This greatly reduces material overhead
and makes TinkerNet2 much easier to deploy.

3.1 User-Mode Linux
When considering further revisions to TinkerNet, one of
the most appealing ideas was to use virtual operating
systems instead of a cluster of old computer parts. Xen,
User-Mode Linux, and VMware were all found to be
possible options.

An Open Source solution was deemed to be best for an
academic application. User-Mode Linux is a
virtualization scheme that has documented networking
and port communication abilities (very necessary for
networking). UML has been incorporated into the Linux
Kernel tree and is used for development of new kernel
versions. This means that UML is reasonably stable and
up to date with current Linux developments.

UML works by changing the memory space that a Linux
kernel expects to use such that it will fit in the normal
process space inside of another Linux kernel. Thus,
User-Mode Linux appears as a process inside of Linux.

For TinkerNet2 a custom User-Mode Linux kernel was
built in order to have the smallest memory footprint
possible; same approach as was taken with OSKit in
original TinkerNet. This allows TinkerNet2 to handle
more users with less delay. This also allows removal of
many extraneous features that could give student code
greater access to networking tools than intended.

3.2 User-space Networking
TinkerNet2 required a system to run a student developed
network protocol stack in the UML user-space kernel. A
framework that could extract packets from a network
device and present them in raw form to the UML user
kernel as well as send raw packets out over a network
device was developed by combining the abilities of libnet
and libpcap. By combining this user space code and
UML, a virtual node is created that can safely run student
networking code.

Figure 2: Network topology of the Virtual TinkerNet
system

3.3 TinkerNet2 Operation
In TinkerNet2 the user's networking code is run in a
kernel that is created within an instance of User-Mode
Linux. This gives easy access to a simulated network.
This system is controlled by a pair of programs, tinkernet
and tinkerboot (Figure 2).

tinkernet, which corresponds to the Tinkercontroller in
original the TinkerNet, controls the UML based network
simulation. tinkernet keeps track of the UML nodes that
are being used on the system, relays user commands to
the UML nodes, and sends debug data from the nodes
to the users.

tinkerboot (corresponding to Tinkerboot in the original
TinkerNet) is the user interface to the system through
which users load their code, send packets, and receive
debugging information. One goal of the tinkerboot user
interface is to remove the necessity of interacting directly
with UML. Ideally, it should not be necessary for users
to know that the system is based on UML.

3.4 Future TinkerNet2 Development
While TinkerNet2 is fully functional, there are features
that were left out due to time constraints. The most
important of these features is packet dropping. In original
TinkerNet, Tinkeradmin had an option that would force a
certain percentage of packets in the warzone network to
be dropped. This feature is crucial for any realistic
transport level data stream lab.

Development on TinkerNet2 continues with a plan to
make it available to the community.

4 Virtual Distributed Ethernet
Virtual distributed Ethernet (VDE) (Davoli 2005),
developed as part of the "Virtual Square'' project (Davoli
2007), provides a distributed virtual local area Ethernet
network based on virtual switches and virtual cables.
Unlike TinkerNet2, which is a closed network simulator,
a VDE can interconnect virtual machines (e.g. UML,
Qemu (Ballard 2005), /MPS (Goldweber and Davoli
2005, Morsiani and Davoli 1999), other VDEs, or
physical machines. Physical machines are connected to a

56

VDE through a virtual interface, e.g. tun/tap
(Krasnyansky 2007).

All the connected machines see the VDE interface as if
they were interconnected by a standard Ethernet LAN;
even if all the connected "machines'' were being run on
different real hosts, possibly geographically distributed.
VDE is like a multipoint VPN that interconnects both
virtual machines and real hosts with a data-link layer
abstraction.

The main features of VDE are

Its behavior is consistent with a real Ethernet
network.

It interconnects virtual machines, applications and
virtual connectivity tools to support interoperability
with real networks.

The hosts supporting the virtual machines,
applications and virtual connectivity tools may be
geographically disperse. (i.e. VDE works in a
distributed fashion.)

It runs completely in user-mode.

The structure of a VDE is itself consistent with the
hardware structure of a real modern Ethernet network
(Figure 3.)

The VDE switch (vde_switch) is the main component
in a VDE. A real switch is a tool with several ports that
can be used to interconnect computers and other switches.
Similarly, a VDE switch has several ports where virtual
machines, applications, virtual interfaces or connectivity
tools can be virtually "plugged'' in.

Two real switches are interconnected by a (cross) cable
which is composed of two plugs and a wire between
them. A VDE cable is composed of two VDE plugs
(vde_plug) and a VDE wire. vde_switch and
vde_plug are VDE component programs. A VDE wire
is any tool able to transfer a data-stream (e.g. cat, netcat,
ssh).

VDEs are particularly useful in the testing of new
network protocols or student implementations of existing
protocols on existing infrastructure. This would include
the testing of IPv6 protocols on IPv4 infrastructures.
Like TinkerNet, VDE is used to support a networking
course where students build a complete protocol stack
layer by layer. A VDE can also be used to build upon an
operating systems course. Student written operating
systems such as the Kaya project (Goldweber and Davoli
2005) or student experimentations with UML can be
seamlessly extended in a networking course; the student
written network stack will work on their student
written/modified operating systems.

Additionally, VDE's can provide a safe environment
where experimental services or student implementations
of existing services can be designed, implemented, tested
and deployed. This deployment can also optionally
extend beyond the confines of the virtual network. Using
the slirpvde tool one can connect a VDE network
with real IP networks.

A key design feature of VDE is that it runs completely as
a user process. Root access is only needed when one
wishes to connect a VDE with a real IP network. Outside
of this, student experimenters are free to design their own
network topology, implement their own protocol stacks,
modify existing protocol stacks, and implement their own
network services.

A VDE is in essence a safe, open-ended "sandbox'' (with
very high walls) for student experimentation; whatever
happens on the VDE is completely disconnected from
both the underlying real network and other networks
connected to it. VDEs have been used to support projects
in network administration and network security in
addition to traditional networking projects. For example,
a VDE was recently used to support experimentation in
detecting and testing countermeasures for denial of
service attacks.

4.1 Future VDE Development
VDE is currently supported and distributed (though at
differing versions) by Debian SID, Gentoo, FreeBSD,
MacOSX, and is available for many other distributions.
While VDE development takes place on i386 and
powerpc machines, under GNU-Linux, VDE has been
ported to the alpha, amd64, arm, hppa, ia64, m68k, mips,
mipsel, s390 and sparc architectures.

Future versions will support VLAN and 802.1Q
encodings of multiple subnets on the same "port.'' This
will allow a UML host to define several virtual interfaces
over one VDE connection.

5 Laboratory Experiments
The prototype Laboratory experiments for all three
environments are focused on student development and
testing of a fully functional network protocol stack. Each
experiment or phase builds on previous experiments. The
experiments work up from raw Ethernet packets to a fully
functional implementation of IP and then UDP.

Two additional experiments have been developed for
TinkerNet where students create their own protocol and
implement Blast (Peterson and Davie 2003), a
microprotocol which fragments and reassembles large
messages. Besides these experiments many others could
be created, e.g., advanced courses could implement
application protocols or network devices, such as a router.

5.1 Autograder
TinkerNet, which currently has the more mature set of
curricular materials and labs, also supports autograder.
This tool was developed to address the lack of easy and
consistent grading methods, which we perceive as a
detriment to TinkerNet's widespread adoption. In its
current form, autograder requires a slight modification
to each lab, i.e., students are required to implement a call
and response with autograder.

57

Figure 3. Comparison between a real Ethernet and a VDE

5.2 Future Lab Development
Regardless of which tool one may elect to adopt,
TinkerNet, TinkerNet2, or VDE, for the tool to be
useful outside of its developing institution(s), it is
imperative that there exist high quality curricular
materials/lab exercises for use with the tool. It is our
intention to continue to create a single set of high
quality curricular materials/lab exercises that can
operate with any of the three tools/environments. For
each exercise we will develop the exercise description,
an example solution, and an auto grader script. We
will start with the current set of TinkerNet labs, but
plan on adding many more exercises.

6 Assessment
Of the three environments, TinkerNet, TinkerNet2, and
VDE, only TinkerNet has been used in the classroom -
Harvey Mudd College and University of California,
Riverside. There are two aspects of TinkerNet that
require assessment; creating a TinkerNet environment
and use of TinkerNet and the lab exercises in the
classroom. The TinkerNet documentation was
developed so that any student or faculty member can
build a TinkerNet environment.

At the beginning of each networking class a small
group of students is selected to build a new TinkerNet
environment using the online documentation. This
process was never formally assessed. Rather, the
group of students (three or four) was selected with one
goal being limited experience in system administration.
The creation of a new TinkerNet is viewed as a
learning experience for these students.

In the four course offerings where TinkerNet was used
no formal assessment was made of the development
process, but students were asked to provide written

comments on the online documentation. This effort
has helped remove ambiguity from the documentation.
In hindsight we should have created a pre-
questionnaire and a post-questionnaire for this group of
students. We plan to implement such questionnaires in
the Fall '07 networking course. These questionnaires
will be focused on system administration experiences,
such as: setting up a network, operating system
kernels, etc.

6.1 Classroom Assessment
Classroom assessment of TinkerNet based lab
exercises has only occurred at the end of the course,
i.e., final student course evaluations. These
evaluations cover all aspects of the course, i.e., there is
no specific set of questions directed at student learning
via the labs. This is obviously a mistake and
something that we will correct in future offerings.
While the course evaluation comments have been very
positive on the TinkerNet experience, detailed
assessment is required. In particular, we plan to
introduce at the beginning of each course offering a
student questionnaire related to concepts that the
TinkerNet experience will expose, e.g., layering of
protocol modules, efficient data organization within
packets, micro-protocols, etc. At the end of the
semester we will ask students to fill out the same
questionnaire. We will then compare the results. We
are also considering contacting other schools teaching
networking without a laboratory component to see how
their students respond at the beginning and end of the
course to the same questionnaire.

58

6.2 Network Laboratory Environment
Assessment

In general there are a number of approaches to lab
exercises for networking courses. Approaches include

Socket Level Programming
Network administration, e.g., capturing packets.
Network simulation, e.g., NS or Opnet
simulations.
Development of a network tool, e.g., an e-mail
client.
Development of a network device: a router or
switch
Development of network protocols.

TinkerNet and VDE are designed to support most of
the above approaches. But currently, only TinkerNet
has been used in the classroom and its focus has been
network administration and protocol development.
There is a need for comprehensive assessment of all
these approaches and how they are used at various
institutions.

7 Conclusion
Original TinkerNet is a low-cost, flexible, stand-alone
laboratory for running networking experiments, which
combines ideas from others (Mayo and Kearns 1998,
Levin 1997, Chapman and Carlisle 1997, and Rickman
et al. 2001) with open source software (Ford et al.
1997, Nelson and Ng 2000). TinkerNet2 takes a
software approach, UML, to providing the same
environment as the original TinkerNet. VDE provides
a virtual Ethernet LAN that can connect real or virtual
machines. An advantage of these environments is their
accessibility to institutions (e.g., undergraduate
institutions) that do not have on-going research
environments in the area of computer networks. We
will continue to maintain and develop these
environments, and make them available to the
academic community. We also plan on developing a
high quality laboratory experiment environment that
would allow the same set of experiments to be run in
any of these laboratory environments. These
experiments will include solutions and grading scripts.
The home of the TinkerNets is
cs.hmc.edu/tinkernet, and VDE is available at
vde.sourceforge.net.

8 Acknowledgments
This work was supported in part by the National
Science Foundation under grant NSF-DUE-0443012 to
Harvey Mudd College.

9 References
Ballard, F. (2005) Qemu, a fast and portable dynamic

translator. In USENIX 2005's Annual Technical
Conference, FREENIX Track hardware emulator.

Chapman, R. and Carlisle, W. H. (1997) A linux-based
lab for operating systems and network courses. In
Linux Journal, September 1997.

Comer, D. E. (2003) Hands on Networking with
Internet Technologies. Prentice Hall, 2002. ISBN 0-
13-048003-7.

Davoli, R. (2007) Virtual square home page.
http://www.virtualsquare.org/.

Davoli, R. (2005) VDE: Virtual distributed ethernet. In
the proceedings of Trident.com 2005, Trento,
Italy.

Erlinger, M., Molle, M., Winters, T., Shea, R., and
Lundberg, C. (2004) Tinkernet: A low-cost
networking laboratory. In Computing Education
2004, Sixth Australasian Computing Education
Conference. ACM Press, January 2004.

Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A.,
and Shivers, O. (1997) The flux OSKit: A substrate
for kernel and language research. In the symposium
on Operating Systems Principles, pages 38–51,
1997.

Goldweber, M. and Davoli, R. (2005) The kaya project
and the umps hardware emulator. In Proceedings of
ITiCSE 05. Conference on Innovation and
Technology in Computer Science Education, Lisbon,
2005.

ACM Press (1991) Joint Curriculum Task Force.
Computing Curricula. ACM Press, 1991.

Krasnyansky, M. (2007) Universal tun/tap device
driver. Linux Kernel Documentation:
Documentation / networking /
tuntap.txt.

Kurose, J., et. al. (2002) Workshop on computer
networking: Curriculum designs and educational
challenges, August 20 2002.

Levin, M. (1997) A prototype for a data
communications laboratory or a data comm lab in a
closet. In the ACM SIGCSE Bulletin, volume 29,
pages 179–183. ACM Press, 1997.

Mayo, J. and Kearns, P. (1998) A secure-networked
laboratory for kernel programming. In the ACM
SIGCSE Bulletin, volume 30, pages 175–177. ACM
Press, September 1998.

Morsiani, M. and Davoli, R. (1999) Learning operating
system structure and implementation through the
MPS computer system simulator. In Proceedings of
the 30th SIGCSE Technical Symposium on
Computer Science Education, pages 63–67, New
Orleans, 1999.

Nelson, D. and Ng, Y. M. (2000) Teaching computer
networking using open source software. In the ACM
SIGCSE Bulletin, volume 32. ACM Press, July.

Peterson, L. L. and Davie, B. (2003) Computer
Networks, A Systems Approach. Morgan Kaufann,
2003. ISBN 1-55860-832-X.

Rickman, J., et. al. (2001) Enhancing the computer
networking curriculum. In ACM SIGCSE Bulletin,
volume 33. ACM Press, June 2001.

