Bridging the research-practice gap in requirements engineering

Sarita Pais
Whitireia Community Polytechnic, New Zealand
Sarita.Pais@whitireia.ac.nz

Alison Talbot
Auckland University of Technology, New Zealand
alital66@aut.ac.nz

Andy Connor
Auckland University of Technology, New Zealand
andrew.connor@aut.ac.nz

Abstract

This paper examines the perceived research-practice gap in software requirements engineering, with a particular focus on requirements specification and modelling. Various contributions by researchers to write requirements specifications are reviewed and in addition practitioners viewpoints are also taken into consideration. On comparing the research and practice in this field, possible causes for the gap are identified. The barriers to adopt research contributions in practice are also reviewed. Finally recommendations to overcome this gap are made.

Keywords

Software Requirements Engineering, Requirements Specification

1. Introduction

According to Zave (1997) Requirements Engineering (RE) is a process of translating the real world's informal state into a more formal specification. In essence, it is a process of creating and maintaining a system-requirements document to support the development of a given product:

"The primary measure of success of a software system is the degree to which it meets the purpose for which it was intended. Broadly speaking, software systems requirements engineering (RE) is the process of discovering that purpose, by identifying stakeholders and their needs, and documenting these in a form that is amenable to analysis, communication, and subsequent implementation" (Nuseibeh & Easterbrook, 2000, p. 37).

Although there are different activities in this process, the requirements specification sub-process is one in which system requirements are documented in a structured way. It captures users and other stakeholders' requirements in building a system. However, capturing these requirements is not an easy task. According to Brooks (1987) the most difficult task in building a system is deciding what to build, and if this is not done properly it results in a poor system which is difficult to rectify later and will cost more.

Moreover, users often do not know what they want and their needs keep changing (Hsia, Davis & Kung, 1994). In order to produce good user requirements there have
been tremendous efforts from researchers to produce frameworks, models or tools to automate this process. However, these contributions from researchers have not been adopted completely by practitioners (Berry & Lawrence, 1998). Could it be that researchers have no input from practitioners or the software industry for an appropriate research framework? Even if researchers are aware of practitioners' needs, why are they not able to provide efficient tools or appropriate processes? Are there other issues that prevent the adoption of new tools or processes?

This paper attempts to understand the issues underlying this gap between research and practice in Requirements Engineering and what can be done best to minimise it. To undertake this task, firstly the literature that highlighted and stressed the gap was reviewed, in particular the sub-topic area of requirements specification. Research was seen from both the researchers' and practitioners' point of view, and examined whether there was any input from practitioners to researchers. The research questions included: What are the different issues? Can these issues be solved and if not, why? Are there any recommendations to bridge this gap?

2. The Research-Practice Gap

Stating user requirements has been a thorny issue since before the time of Brooks (1987). This difficulty was again stressed in 1990's by Hsia, Davis, and Kung (1994), and it still remains a challenge today. Although techniques to write requirements have been a research subject for some time, results of such research has not been followed by practitioners. The state of practice is that requirements are often still written in natural language, despite the drawbacks of such a presentation. Requirements are also seldom read, resulting in systems which do not satisfy the user.

Lamsweerde (2000) outlined the on-going problems of RE which contribute to large scale project failures for US and European companies. It is true to this day that RE is still a complex task (Cheng & Atlee, 2007). Unlike other parts in software engineering, it has to cover both technical and human aspects (Faulk, 1997). Developers do not have the domain knowledge of the system to be built. Although there are significant CASE tools, commercial off the shelf (COTS) products, conceptual models, and requirements management tools are produced through the insights of researchers to aid practice. Not all are used by the practitioners for various reasons. It has been observed that "without more technology transfer, RE practice is unlikely to improve and much RE research will remain irrelevant." (Kaindl et al., 2002).

Even if tools or methods are used, the guidelines for their use are not efficiently or completely followed. This leads to the research-practice gap in RE in general. On the other hand, it is also noticed that practice has led to form theory in Information Systems (IS) like prototyping and defining the stages of system development life cycle (Fitzgerald, 2003). Is this trend also visible in RE and in particular requirement specification? Or do researchers have enough inputs? Is this gap significant even in the requirement specification? Wieringa and Heerkens (2006) question whether the research community is responding well to this challenge.

They hypothesize that, of the papers presented at conferences, what are called research papers are often design papers. While that in itself is not a problem, they see that there are very few other papers in RE conferences. Davis and Hickey (2002) argue that many requirements engineering researchers fail to understand current practices. Redwine and Riddle (1985, cited in Davis & Hickey, 2002) concluded that "When we as requirements researchers lament that technology transfer takes a whopping 15 years, perhaps we should look no farther than ourselves." (p.110)

Whilst the research practice gap is of concern in the global arena, it is important to consider the New Zealand perspective. Within potentially 20 years worth of data, it is apparent that there has been little exploration by researchers of current practice in the local software development industry, let alone that which focuses on Requirements Engineering. Only a limited number of articles that research New Zealand companies' requirements analysis processes have been found in the literature (Groves, Nickson et al., 2000; Kemp, Phillips, et al., 2003). In part this may be a reflection of Fitzgerald's (2003) assertion that less academic research value is placed on research that is
published in practitioner oriented journals hence this is not considered a "worthwhile" area of analysis.

The first of the New Zealand studies (Groves, Nickson, et al., 2000) was carried out in 1999 and analyses data gathered from 24 telephone interviews and four in-depth interviews. The information recorded included items such as size of company, kind of developments undertaken, formality of the process and/or notation, proportion of project spent in requirement specification, standards in place within the organisation that the process is subject to, types of testing undertaken and tools and languages used. In the analysis of the results, no attempt was made to measure the effectiveness of the processes, or estimate the overall capability (as in measuring against the capability maturity matrix) of each company. The survey did provide some useful basic information relevant to the local industry and as such provides an excellent snapshot of practice at that time.

The second study (Kemp, Phillips, et al., 2003) investigated the broader topic of software engineering and tool support. It took the form of structured interviews with five New Zealand software developers and in addition to questions about tools, covered project lifecycle, and management. As with the previous survey, no attempt was made to measure practice against any form of capability model. However the authors did note that all of their respondents had some form of formal project management in place, but that the degree of structure varied markedly. Unfortunately the information gathered referred to analysis/design activities rather than separating out requirements analysis/engineering tasks. In this respect the article is confined in its usefulness to providing evidence about the overall project process.

There still exists a pressing need to review and assess current software development practices in New Zealand, particularly in the area of Requirements Engineering. Similarly, there is scope to investigate whether international practices are appropriate for New Zealand companies to adopt. The outcomes of research related to companies similar to those typical in New Zealand, such as the work of Nikula, Sajaniemi, and Kälviäinen (2000) which addressed RE practices in small to medium sized enterprises, need to be analysed for applicability in the cultural, social and technological environment of New Zealand.

3. Requirements Specification

In the requirements engineering process, the development of a requirements specification commences after the initial elicitation of requirements. User requirements need to be documented well to ensure that proper instructions are available to developers to enable them to design and code an appropriate solution. This documentation could be in natural language. However developers prefer more formal specifications which can be directly useful to build the system.

Researchers have contributed towards using conceptual models as used in system analysis and design and object oriented analysis and design. These models define a scope for RE to detect any oversight and inconsistencies. However the downside of this is that it reduces creativity in the RE process (Pohl & Peters, 1996). Models, like the Unified Modelling Language (UML), are not well understood by users (Kaindl et al., 2002). Practitioners really do not follow a structured method in capturing requirements from users which is often reflected in the poor performance of the developed system.

In a survey conducted in over 3,800 organisations in 17 European countries, it was claimed that 50% of problems in software projects lie in the requirements specification (Lamsweerde, 2000). This is a grave situation and it is important to learn more about the research and practice in requirements specification. It is essential to understand what contributions have come from researchers and practitioners in this area, what differences and similarities there are between them.

Gorschek and Svahnberg (2005) looked at the requirements practices of six companies and found the following defects to be common in the current processes or documentation. They included: lack of standard templates or minimum set of attributes for specifying requirements; quality requirements expressed in a form that is not testable; lack of requirements review; and poor or an absence of recording
These problems have already been addressed by both research and practitioner authors. So this may indicate poor training or a reluctance within organizations for structured methods. It may also be that these companies are not truly "requirements ready", and the defects in the requirements process are in fact a reflection of some other lack of capability in the company, particularly the ability to accommodate and adapt to change. Sommerville (2005) points out that, with experience, "the initial assumptions that underpinned much RE research and practice were unrealistic." (p. 18). It is now understood that change is inevitable; no one can understand the whole problem before starting system development and new insights as development progresses lead to changes in requirements.

3.1. Research Perspective

Researchers differentiate RE as a process of what the system should do (Berry & Lawrence, 1998) while others stress the need for more formal specification as they have the qualities of good RE (Faulk, 1997). However, Nuseibeh and Easterbrook (2000) consider that it is important to know when to formalise it, considering users favour natural language. The concept of modelling and specification is sometimes misunderstood (Machado, Ramos, & Fernandes, 2005). A conceptual model has to be converted with standard language to represent the system model to be called a specification.

3.1.1 Unified modelling language

When structured programming was used in the past, structured analysis and design methods were employed to document the formal specification. Now with object oriented programming more in vogue, object oriented analysis and design methods are used (Faulk, 1997). With object oriented analysis, data and related process are kept together which was not the case in structured analysis. Then there are models for various purposes. Activity oriented specification can be depicted as DFD or using UML notations such as a use case and activity diagram. Data oriented specification can be ERD and class diagram (UML). The other good point here is that same models are used in RE which are easy for developers to understand and proceed with the system development. There is no rewriting at each step in the software development process. But the models at RE level may not contain all the merits to represent the user's needs, and the user is not familiar with these models.

3.1.2 Prototyping

Prototypes help in capturing the elicitation of requirements leading to proper specifications (Pohl & Peters, 1996). This is also supported by Faulk (1997), as it takes less time and there is no need to write requirements specifications. Hence a prototype can serve this purpose, saving time and cost for a quick development process. Moreover, users can understand and review the proposed system.

3.1.3 Commercial off the shelf products

The integration of COTS products as a means to achieve a given functionality is again a useful model which reduces the overheads of the RE process (Nuseibeh & Easterbrook, 2000). They can be used as a checklist to cover all possible constraints. However, they may not be able to locate the root cause of any investigation in RE. Hence a qualitative approach is not possible.

3.1.4 Goals

Lamsweerde (2000) gave his contributions on identifying goals in RE and then converting them to more formal methods. Goals could cover both functional and non-functional requirements. A goal can start from the elicitation stage from the business
perspective and end up in a more formal and structured specification as in object oriented (Lamsweerde, 2003).

3.1.5 Scenario based models

Scenario based models are gaining importance in recent times (Cheng & Atlee, 2007). It is easy for practitioners and users with non technical backgrounds to put together their ideas and brainstorm on it, to refine requirements of the proposed system. SCRAM (Scenario-based Requirement Analysis Method) is one such method which also incorporates prototyping (Sutcliffe, 2003) within it. Moreover, scenarios can be expressed informally using natural language and more formally in modelling languages (Rolland & Prakash, 2000).

3.1.6 Capability maturity

Hall, Beecham and Rainer (2002) conducted an empirical analysis of 12 software development companies, with a view to identifying patterns in occurrences of problems related to requirements engineering. One of the conclusions of their work is that the number of problems generally tended to decrease as the maturity of the company increased. The Capability Maturity Model (Sawyer, Sommerville et al., 1999) appears to have been adopted as the de facto industry standard to measure the effectiveness of an organisation’s requirements engineering practice. This is evidenced by its use in such studies as that undertaken by Gorschek and Svahnberg (2005).

Recently a newer model, the Requirements Engineering Maturity Measurement Framework (Niazi, Cox, et al., 2007), was proposed. However it is still based on the capability maturity matrix. Sommerville and Ransom (2005) conducted an empirical industrial study of requirements engineering process, maturity assessment and improvement. They concluded that the RE process maturity model was useful in supporting maturity assessment and identifying potential process improvements. They also indicated that there was evidence to suggest that requirements engineering process improvement would lead to business benefits, though these benefits could be a consequence of the changes to the RE process or from side-effects such as greater self-awareness of business processes.

3.2 Practice Perspective

Practitioners generally do not differentiate much between the "what and how", or between the end product and the actual process of building the system (Berry & Lawrence, 1998). They also do not waste much time in writing formal requirements specifications (Faulk, 1997) as they are not practical. They are considered to be difficult to use, as users do not understand them. It costs them more of their tightly budgeted project time. Most tools developed by researchers are in prototype stage and have scalability issues when applied to real life systems. Hence practitioners have no trust in them. This viewpoint as not changed much in recent times.

3.2.1 Current approach

According to a survey by Neill and Laplante (2003), 35% of companies still use waterfall methodologies in RE. Although prototyping is not part of waterfall methods, 60% used prototyping in it, 50% used scenarios and use cases, 51% used informal methods like natural language, and 33% did not use any methodologies. The percentage of agile methodologies used was negligible. It is very clear from these statistics that there is a mix of practices in industry. UML is still not a prominent methodology. As the statistics are from 2003, it is possible there might be a slight increase in the adoption of UML in RE. Again, this is the viewpoint of researchers and there are not many journals to support the viewpoint of practitioners. Normally while practitioners know the merits and limitations of the method they use and are not aware of other methods. It is researchers who make comparative studies of different methods and publish their work, but perhaps do not disseminate the results to practitioners.
3.2.2 Formal methods

It is well known that RE is not time effective. However, this approach is changing as RE plays a significant role in the success of finished product (Nuseibeh & Easterbrook, 2000). However there is not a good reputation among stakeholders of using formal methods (Kaindl et al., 2002). In that case, it is not clear if formal methods are approved in current practice. A lack of understanding of formal methods themselves may be a contributing factor to the lack of adoption.

3.2.3 Use of UML

UML is fast becoming as an emerging leader in analysis and design of software systems. These same models are widely accepted in RE as well. Business use case is initially used to draw up the requirements from the users (Leffingwell & Widrig, 2000). They are kept simple for non-technical stakeholders. Many of the user's requirements may not be feasible. With the help of these formal methods users are now able to get a better insight into the proposed system. These specifications are also approved by developers as it is easy to convert these formal models into other stages in software development (Machado, Ramos & Fernandes, 2005).

3.2.4 Use of agile methodologies

Agile methodologies are becoming more prevalent today. In many implementations of the agile principles there are no requirements specifications documents maintained (Cao & Ramesh, 2008). A practical prototype is built after face-to-face communication with the user. The prototype is reviewed and evolved. Users are part of the development process and need their continuous feedback for further progress. This could often cripple development work as it is needs the continuous involvement of users.

Thus practitioners have their own various view points of requirements engineering. In the next section, research activities and industry practices are analysed. The reasons for the gap between research-practice in requirement specifications are identified and some recommendations to overcome this gap are suggested.

4. Discussion

Thus far, various viewpoints of researchers and practitioners have been reviewed. Putting researchers work on one side and practitioners needs on the other side, a working solution is put forward. Before any solution is planned by researchers, it is important to know what works in practical world for the practitioners and what method is efficient to put together requirements specifications.

4.1 Needs of the Practitioners

Practitioners need a well managed RE tool. It should have ease of use. The whole process of RE should be cost effective to balance overheads, time and training (Cheng & Atlee, 2007). In other words it is a practical tool. Empirical studies from software companies should be used in RE research to build tools that conform to these needs.

As the complexity of software development has increased, it is important to involve users in its development (Faulk, 1997), especially requirements specifications. As formal methods are not easy for users to understand, a tool which will capture and convert natural language requirements into formal methods is desirable.

Requirements specifications are not standardized (Faulk, 1997). Today UML is getting recognition as the de facto standard (Kaindl et al., 2002). However, it not clear if UML is able to completely cover all aspects of RE.

Practitioners' work is often published as a white paper which has little credit when compared to research papers. Most of their work is not accepted by research publications which are biased against them (Fitzgerald, 2003).
4.2 Current Research Contributions

Researchers are aware of practitioners' needs. Attempts have been made to automate RE by converting natural language specifications into formal methods, considering both the functional and non-functional specifications, building repositories of requirements to reduce time and cost. More details of these contributions are given below.

4.2.1 Repository of natural language requirements

Natural Language is found to be the most convenient way to extract user requirements. Although requirement engineers would prefer formal methods, they have to deal with users in natural language. Moreover formal methods can check internal consistencies. However, they fail to check external factors as they are user dependent. Natural language is therefore an appropriate solution.

Hence it is important to keep a repository of such natural language requirements (Och Dag, & Gervasi, 2005). A matching requirement technique is searched the same way as in information retrieval. Challenges of matching the appropriate requirement in the repository is still in its infancy. Although linguistic engineering technique is used, there is a need for lexical match as well. Hence there is a growing concern among researchers to develop a tool to convert natural language specification into formal methods.

4.2.2 Functional and non-functional requirements

Hsia et al. (1994) put forth the importance of a unified framework dealing with both functional and non-functional requirements. However, most conceptual models capture functional requirements but not non-functional requirements (Nuseibeh & Easterbrook, 2000). The research community is currently focusing on this. Machado, Ramos, and Fernandes (2005) came up with a solution for non-functional requirement like a performance considering time factor which can be measured in sequence diagrams of UML.

As these constraints are equally important to build good system, it has to be covered early on in the RE. Other examples are web based interfaces with poor security. This has to be an important concern too. Then there are other issues like usability and reliability of systems. Hence non-functional requirements need to be given equal importance as functional ones.

Although researchers have contributed to the needs of the practitioners, there is something still missing. Hence, it is still not accepted completely. The next section will illustrate the reasons for it.

4.3 Barriers

There are several reasons cited for the Research-Practice gap. Although researchers are aware of needs of the practitioners, there are other issues, some of which are not easy to implement. These issues were brought to light in the last two decades and yet a complete workable solution is not yet evident in literature.

4.3.1 Lack of collaboration

There is little or no collaboration between researchers and practitioners (Cheng & Atlee, 2007; Pohl, & Peters, 1996). This viewpoint has not changed to this day. The inputs to research do not reflect the issues of RE in practice. Even if researchers come up with a solution, the scalability of such research outputs is not covered due to non availability of industrial data or collaboration (Pohl, & Peters, 1996). Hence data with industrial strength should be employed in research (Cheng, & Atlee, 2007).

4.3.2 Lack of training
RE is not taught in-depth in many universities. Students have only some vague knowledge through software engineering. Hence there is a lack of well trained requirements engineers (Poh & Peters, 1996). Further training or technical support is not provided from the researcher once their work is published (Hsia, Davis, & Kung, 1994). They suggest many researchers will move on to the next big problem once they have reached a proof of concept stage in their current work. Hence, most practical outputs from their work is still in prototype. No further support is given by researchers to practitioners in choosing the correct tool (Pohl, & Peters, 1996). Developers find the methods unsuitable and do not trust them (Hsia, Davis, & Kung, 1994). Hence they cannot be easily adopted on a commercial scale.

5. Recommendations

These issues concerning the gap between research and practice in requirements specifications, can be remedied as follows to bridge this gap.

5.1 Empirical Studies

The survey study (Neill & Laplante, 2003) cited earlier only gave different choices of capturing requirement specifications. There were no details of any issues in the current practice of the practitioners or any suggestions. Research should be conducted to get the essence of a qualitative study, involving case studies of several organisations (Jiang, Eberlein & Far, 2005). This may provide evidence as to the state of practice in RE and what is required by the industry to capture requirements specifications (Zave, 1997). However, it is difficult to generalise and apply findings to all projects. Kaindl et al. (2002) make strong recommendations for more research on the economics of RE to gain concrete knowledge as to what organizations can gain from applying state of the art requirements approaches.

5.2 Automation Tool

There is a need to find a tool which can automatically translate natural language specifications into formal ones (Zave, 1997). Hsia, Davis and Kung (1994) suggest that even a partial translation could help as most of the practitioners still prefer natural language for RE. Some (2006) came up with a specification model collating all use cases, so that the specifications could be generated on the fly.

5.3 Repository

A database collection of all frameworks used to capture RE knowledge, especially dealing with specifications should be made available (Cheng & Atlee, 2007). There should be recommendations made to suit different projects. This will reduce the time factor in writing requirements specifications and provide an easy adoption of formal methods.

5.4 Collaboration

While most researchers are from an academic background, some do have past experience in industry. However, the trend in the software industry is very dynamic as the industry is still not mature. Past experience in industry may provide little help for researchers to envision the current industry problems in RE. The development of tool and practice should go hand in hand (Lamsweerde, 2004). Hence, more continuous collaboration between researchers and practitioners will help to bridge this gap.

6. Conclusion

This report highlights the gap between researchers and practitioners in RE especially in the requirement specification area. Researchers have given formal methods while practitioners still prefer natural language to write the requirement specifications. After studying the needs of the practitioners and issues of using formal methods, it is suggested that more empirical studies, the development of automation tools to convert natural language into formal specifications, the use of repositories, and collaboration may assist in narrowing this gap.
References

Kaindl, H., et al. (2002). Requirements engineering and technology transfer: Obstacles, incentives and improvement agenda. Requirements Engineering, 7(3), 113-123.

Copyright © 2009 Pais, S., Talbot, A. & Connor, A.
The author(s) assign to NACCQ and educational non-profit institutions a non-exclusive licence to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The author(s) also grant a non-exclusive licence to NACCQ to publish this document in full on the World Wide Web (prime sites and mirrors) and in printed form within the Bulletin of Applied Computing and Information Technology. Authors retain their individual intellectual property rights.

Copyright ©2009 NACCQ.
Michael Verhaart and Krassie Petrova (Eds.)
An Open Access Journal, DOAJ # 11764120, (zotero)