Abstract

In 2002 the Eastern Institute of Technology (EIT) Hawke's Bay decided to build a purpose built information technology suite and at the same time upgrade its existing internal network infrastructure. As a result of the subsequent tendering process Allied Telesyn was identified as the preferred provider of networking hardware. Once the staff of the Information Technology section of EIT had discovered who Allied Telesyn were, they looked for opportunities to develop meaningful relationships beyond hardware purchase and support. Areas investigated included building naming rights, student sponsorship, industry course delivery and graduate employment opportunities. This paper traces the ongoing relationships and explores how opportunities to build meaningful industry connections can be established within the existing programmes that a tertiary institute offers. The paper backgrounds Allied Telesyn and the services they offer and traces the steps that were taken to establish a new course within an existing degree structure. The paper also examines other opportunities for cooperation between the real world and the academic world and looks at the future potential for ongoing relationships. We believe that such relationships are essential for institutes that intend to offer relevant tertiary qualifications that are geared towards meeting the needs of prospective employers.

Keywords

Allied Telesyn, industry relationships, tertiary alliance

1. Introduction

Over the last decade there has been a proliferation of industry-based qualifications, such as CISCO CCNA and Microsoft MCSE. Tertiary institutes have explored ways to integrate these courses into their existing qualifications, and several papers (Atkins, 2002; Brimblecombe, 2002; Henry, 2000) have been presented that outline how different institutes have managed this process. The Eastern Institute of Technology (EIT) has taken a slightly different approach, which has resulted in the development of a special relationship with networking solutions provider, Allied Telesyn. EIT has undertaken a number of initiatives including the integration of elements of Allied Telesyn courses into its Bachelor of Computing Systems degree. An aim of this particular initiative is to produce graduates with skills that will enable them to have an advantage over computing graduates from similar institutes when seeking employment at Allied Telesyn.

This paper considers the pedagogical advantages of adding industry based learning materials within an existing course and outlines the importance that both EIT and the New Zealand Tertiary Education Commission have placed on industry relationships and
collaboration. The paper introduces Allied Telesyn and traces the events that led to the establishment of a special relationship between Allied Telesyn and EIT. The paper also describes the nature of the evolving relationship and explains the processes followed by EIT to develop a new third year data communications course which was tailor made to include areas of Allied Telesyn training materials previously not covered within existing EIT courses. The paper concludes by looking at possibilities for the future and suggests that there are opportunities for tertiary institutes to develop meaningful relationships with major industry players.

2. The Pedagogy of Industry Based Content

A significant advantage offered by integrating industry based training materials into traditional academic courses is the opportunity to add real world case studies, based on Allied Telesyn's commercial experiences. The use of real world case studies using modern switches and routers has enabled what was previously a mainly theory programme to include industry specific practical training. The case studies provide an opportunity to apply the theory of data communications to real world industry based practical situations.

The use of real world case studies is based on an educational philosophy, which associates knowledge directly with action (Boeher, 1995). The case method is based on a principle that real education is an experiential experience that consists of a combination of learning experiences.

Supporters of the use of case studies in education adhere to two fundamental principles. The first is that the best-learned lessons are ones in which students discover for themselves through their own struggles, and the second is that the most useful kinds of understanding and judgment cannot be taught but must be learned through practical experience (Volpe, 2000).

When instructors use case studies they are using real-world problems as a platform that can challenge students to learn skills that will be appropriate to deal with the practical problems they will face in the work place. Case methods allow students to work through a problem and reach a deeper understanding of concepts than they would have if they had only read a text or listened to lectures.

Velenchik (1995) highlights issues addressed by the use of case studies. Case studies motivate students to learn by providing a platform where tools are needed to solve problems. Students then start looking for the tools rather than expecting to have them delivered. Case studies also encourage students to apply the theory, placing a focus on analysis and evaluation and enabling students identify the limitations of the theory.

The emphasis that case studies place on analysis and evaluation, helps students move up the cognitive skills ladder from the low level skills of comprehension to the higher level skills of analysis and evaluation. The case method provides a stimulating environment within which to develop the cognitive skills in learners.

Volpe (2000) suggests that is no single approach to case teaching. Instead there are different approaches that work for different people in different situations. He also suggests that there are two main ways of using case studies. The first is to use the case study to support and illustrate lectures and seminars and the second is to use the case study to challenge students to grapple with the decision making process, formulate a strategy and come to class ready to explain and defend their strategy. The addition of Allied Telesyn's industry based case studies to the existing courses will allow both approaches to be adopted.

3. Introducing Allied Telesyn

Allied Telesyn NZ (2003) is a technology company that claims to be able connect the world with affordable, highly reliable networking technology and products. Allied Telesyn NZ (Allied Telesyn) has two major arms to its operation, Allied Telesyn International and Allied Telesyn Research. The International arm is a market leader in the global networking industry, employing more than 1500 people in 13 countries and generating annual revenue of around US$500 million.
Allied Telesyn Research is based in Christchurch and is the leading research and development arm for Allied Telesyn International. Allied Telesyn Research is responsible for developing the company’s most advanced and innovative networking products. At present they employ over 180 people, and 37 graduates have been taken on as part of the 2003 graduate recruitment intake. They are located in purpose built facilities, and plan future expansions to accommodate the increasing staff numbers and the planned number of new product expansions.

Allied Telesyn have a range of over 200 products, and together with Connector Systems, they market the products and services within the New Zealand market. They claim that strong customer support and innovative research have led to an ever-increasing demand for its product range. Hardware products include multiprotocol routers and layer 3 switches. The main emphasis of software development is to provide software products that enable the hardware to operate effectively.

4. The EIT Connection

During the later part of 2001 and the early part of 2002 a proposal to construct a purpose built Information Technology building for EIT was accepted. As part of the tendering process, expressions of interests were called for the provision of a replacement network backbone for the Institute. Allied Telesyn in conjunction with Connector Systems, won the network replacement tendering process.

While representatives of the Allied Telesyn and Connector Systems were visiting EIT it was suggested, by the then IT Services Manager, that the academic Information Technology staff meet with the representatives to investigate opportunities for developing closer relationships between the academic staff of EIT and the industry practitioners. The discussion at the meeting centered on identifying what EIT could do for Allied Telesyn and Connector Systems and visa versa. The possibility of EIT becoming a training partner and incorporating Allied Telesyn course content into its existing course offerings was seen as a proposition deserving further investigation.

Following the meeting at EIT, representatives of the Business and Computing faculty and the IT Services Manager undertook a site visit to the premises of Allied Telesyn Research in Christchurch. During the visit, EIT staff were given a full tour of the Allied Telesyn facilities and further discussions took place to refine the business and academic relationship between the two organizations.

Once an agreement in principle to establish relationships had been reached, Allied Telesyn provided details of the courses that they conducted for their clients and staff, and EIT went about identifying the overlap between their existing courses and the Allied Telesyn offerings. It was evident that much of the course content was already covered by the two existing Data Communications and Networking courses offered at EIT as part of their Bachelor of Computing Systems (BCS) degree. It was also clear that there was scope for modifying the existing courses and developing a new third year course which could be used to bridge the gap in content between the EIT BCS courses and the Allied Telesyn training courses. It was proposed that the new third year paper would concentrate on network design, implementation and configuration, and should complement the existing offerings at EIT.

Towards the end of 2003, a sponsorship agreement was signed between Allied Telesyn and EIT, with Allied Telesyn agreeing to supply equipment and training materials in return for naming rights associated with the third floor of the new Information Technology building. The third floor accommodates EIT’s hardware and software laboratories, one of which will be used to deliver the newly created third year course. The agreement also allows for EIT students to undertake work placements with Allied Telesyn Research and provides preferential access to the company’s graduate recruitment program.

The EIT Information Technology building was opened on May 8th 2003, and Allied Telesyn participated in the ceremony drawing attention to the special relationship and the reasons for sponsoring a floor.

5. Industry Collaboration and the Building of Relationships
EIT's mission statement identifies its role as "enhancing the capacity of individuals to participate in the workforce and other parts of society and enhance the capacity of businesses to assimilate and use relevant knowledge, expertise and technologies". The endeavors of EIT and Allied Telesyn to develop a working relationship have gone a long way to assist with meeting these mission requirements. Students and staff at EIT will benefit from the increased industry exposure and the access to higher level networking equipment and knowledge. Allied Telesyn will have an opportunity to increase its exposure and will enhance its chances of recruiting suitably equipped graduates for their expanding operations.

For the first time New Zealand has developed a tertiary education strategy that will directly contribute to the broader national, social and economic goals. "The objective is to build on the many strengths of our current systems to create a world class tertiary system with a high level of strategic relevance to our economy and society" (TEAC, 2003). In taking this into consideration alongside the more specific objective of building "stronger linkages with business and other economic stakeholders", it was important that EIT created an industry linkage like the one we have with Allied Telesyn. It cements further the commitment that EIT has to education and to providing their students with the best possible opportunities.

6. Benefits to EIT and to Allied Telesyn

The integration of Allied Telesyn materials into the BCS degree has significant benefits to EIT and its students and Allied Telesyn. Students will now have the chance to enroll in a third Data Communications and Networking paper which is built around real world case studies and is aligned to specific industry demand. They also have an opportunity to undertake work placements at Allied Telesyn Research and if they are successful with the course and the work placement they will have preferential access to the company's graduate recruitment program. EIT has an opportunity to market its relationship with Allied Telesyn and strengthen the relationship further. Allied Telesyn has increased its profile in the Hawke's Bay through it's naming rights and it will have a pool of graduates who will already have significant experience using and configuring a range of its products.

The development of the third year Data Communications and Networking course helped fill a gap that had been previously identified by students, faculty and industry advisors and formally acknowledged as an area needing additional attention by academic staff. It also allows students wishing to major in networking to complete the paper and then seek a work placement with Allied Telesyn. The goal of such a placement would be for students to complete their compulsory third year project. Allied Telesyn will have the opportunity to observe the students and if they are deemed to be suitable employees, will be able to be employed as part of the company's graduate employment scheme.

Allied Telesyn currently run industry short courses for organizations and individuals who wish to gain expertise in using Allied Telesyn products. The relationship will enable the company to offer the courses from a North Island base using EIT facilities. There is also potential for the courses to be delivered by EIT staff on Allied Telesyn's behalf. Allied Telesyn will be able to increase its exposure in the North Island, and establish itself as an organization that sees value in establishing working relationships with a tertiary institution. Exposure to the Allied Telesyn brand is gaining momentum and the sponsorship naming agreement was seen a mechanism to increase the company's profile.

7. The New Course Prescription

When it became evident that the EIT/Allied Telesyn relationship was likely to be based around training and information exchange, EIT began looking at its existing Data Communications and Networking courses to establish areas of overlap between EIT BCS courses and Allied Telesyn training packages. It was fortunate for EIT that the timing of the relationship discussions coincided with an EIT wide review of all degree courses, conducted because the institute had decided to adopt a standard structure of 15 credit courses for all degree programmes. Since the BCS degree had a combination of 12 and 18 credit courses all the courses within the programme required review and
The content for the two Data Communications and Networking courses was rearranged with the year one course aiming to provide the students with a knowledge of the concepts of data communications and networks and the year two course aiming to use the concepts of the year one course to provide students with skills in planning, installing and using data communication facilities. While the two EIT courses covered much of the content of the Allied Telesyn training courses, a significant material requiring skills at the higher levels of the Bloom's taxonomy (Bloom, 1956) had been left out; it was used to develop a meaningful third year Data Communications and Networking paper.

Course prescriptions were prepared, and the three data communications courses were presented to local industry advisors and Allied Telesyn staff for comment. The modifications to the existing two courses and the new third year course are currently in the process of obtaining EIT Academic Board approval. It is planned to offer the new third year course as a block course in summer school at the end of the year. The course is already oversubscribed and local industry have also indicated a desire to have their employees participate. The prescription for the course is attached (Appendix).

Midway through the year, Allied Telesyn ran a training course for EIT academic staff and EIT Computer Services staff. The course provided valuable experience for EIT staff, and enabled the staff that will be delivering the new course to participate using the case study approach adopted by Allied Telesyn. This move has helped strengthen the relationship between that is growing between EIT and Allied Telesyn.

8. Future Prospects

As the relationship builds between Allied Telesyn and EIT it is envisaged that Allied Telesyn will increase its profile in the North Island. The activities at EIT will provide a platform for the company to launch its own training initiatives in the lower North Island and provide a base for future initiatives.

EIT has a number of students waiting to take the new third year course and then participate in an Allied Telesyn work placement. This should lead to EIT graduates being employed at Allied Telesyn which should help further build the relationship and identify areas which could be explored to extend the relationship.

Areas seen as having potential for further growth include further integration of Allied Telesyn materials into other courses, sharing of training methods and philosophies and the development of a relationship involving research and testing activities.

Opportunities exist for Allied Telesyn Research to become involve in research projects within EIT. Such projects would provide opportunities for Allied Telesyn and EIT to develop a focused partnership to achieve outcomes of value to both parties.

9. Conclusion

EIT understands the importance of collaborating with industry partners. It enables the institute to keep up to date with the latest trends and also keeps the institute abreast of what graduate skills are in demand.

EIT has been able to establish a meaningful relationship with Allied Telesyn, and the relationship has the potential to develop and grow. Both parties to the relationship have identified quantifiable benefits and as a result students at EIT have been given the opportunity to extend their studies and employment prospects in the data communications area.

The fact that EIT is located in Hawke's Bay and Allied Telesyn re located in Christchurch has not been a barrier to the development of the relationship and should provide encouragement to other institutes who see themselves geographically isolated from major industry players. The potential for increasing industry participation within the Information Technology sections of tertiary institutes certainly exists, it is up to the institutes to take the first step and attempt to identify areas of mutual benefit.
References

Appendix. "Data Communications and Networking 3" - Course Outline

Aim

To provide students with practical skills in switched networking environments. Students will apply the knowledge from Data Communications Networking 1 and 2 to design, implement and configure networks using modern data communications tools and equipment.

Learning Outcomes

The student will be able to:

1. Explain the characteristics of the different types of equipment used in switched networks.
2. Discuss the issues relating to the interconnection of different network types.
3. Explain the principles involved in network segmentation.
4. Discuss the issues relating to Quality of Service (QoS).
5. Critically evaluate Virtual LAN technologies.
6. Research and critically analyze a range of network configurations.
7. Discuss the issues relating to switched network design.
8. Configure and test switched networks.

Copyright © 2004 Corich, S. and McLay, A.

The author(s) assign to NACCQ and educational non-profit institutions a non-exclusive licence to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The author(s) also grant a non-exclusive licence to NACCQ to publish this document in full on the World Wide Web (prime sites and mirrors) and in printed form within the Bulletin of Applied Computing and Information Technology. Authors retain their individual intellectual property rights.

Copyright ©2004 NACCQ.

Krassie Petrova and Roger McHaney (Eds.)
An Open Access Journal, DOAJ # 11764120 , (zotero)